Abstract
This paper presents a theoretical thermoelastic coupled model for a thermal bimorph actuator driven by a harmonically varying thermal load in micro-electro-mechanical systems. The thermoelastic coupling, which arises from the coupling of the strain rate to the temperature field of the heat transport, is considered in this model. The frequency responses are simulated using the theorem of eigenmode expansion. The effects of thermoelastic coupling on the resonant frequency and the quality factor Q for each eigenmode resonance of the deflection are calculated and compared with the same effects resulted from air damping. It shows that for the example of an aluminum–polysilicon thermal bimorph actuator, the resonant frequencies are generally shifted downward with the order larger than that of air damping, whereas the influence of thermoelastic coupling on the Q is more significant than that of air damping under high vacuum level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.