Abstract
In this work, we study a thermoelastic Bresse system from both mathematical and numerical points of view. The dual-phase-lag heat conduction theory is used to model the heat transfer. An existence and uniqueness result is obtained by using the theory of linear semigroups. Then, fully discrete approximations are introduced by using the finite element method and the implicit Euler scheme. A priori error estimates are shown, from which the linear convergence is derived under suitable regularity conditions. Finally, some numerical simulations are presented to demonstrate the accuracy of the approximation and the behavior of the solution with respect to a constitutive parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.