Abstract

In this study, a general analysis of one dimensional steady-state thermal stresses of a functionally graded hollow spherical vessel with spherical isotropy and spherically transversely isotropy is presented with material properties of arbitrary radial non-homogeneity. The material properties may arbitrarily vary as continuous or piecewise functions. The boundary value problem associated with a thermo-elastic problem is converted to an integral equation. Radial and tangential thermal stress components distribution can be determined numerically by solving the resulting equation. The influence of the gradient variation of the material properties on the thermal stresses is investigated and the numerical results are presented graphically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.