Abstract
Based on three-dimensional theory of elasticity, bending behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) rectangular plate with simply supported edges subjected to thermo-mechanical loads is examined. By using Fourier series expansion along the in plane directions and state space technique across the thickness direction for the entities exact solution for bending characteristic of plate is derived. Accuracy of the presents approach is validated by comparing the numerical results with the available published results in the literature. Investigation on the static behavior of the plates is further carried out by considering the effects of volume fraction of carbon nanotube, uniform distribution and functionally graded distribution of carbon nanotube, aspect ratio and length to thickness ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.