Abstract
In the boundary element method (BEM) for stress analysis, it is well known that thermal loads give rise to an additional volume integral in the primary form of the boundary integral equation (BIE). This volume integral needs to be further transformed to surface ones in order to retain the characteristic of the BEM as a boundary solution technique. In this study of the BEM for 3D thermoelasticity in general anisotropy, the fundamental solutions are expressed as Fourier series with coefficients calculated using an explicit-form Green’s function. In the exact volume-to-surface integral transformation associated with the term for the thermal effects in the BIE, a new kernel function is constructed. All formulations are implemented in an existing BEM code for 3D elastostatic analysis. Some numerical examples are presented to demonstrate the veracity of the formulations and the implementation, where the numerical results are compared with those obtained using the finite element method (FEM).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.