Abstract

A Brayton cycle analysis with regeneration fed by heat input from a central concentration solar energy tower and a combustion chamber that uses natural gas is presented. The thermodynamic model includes the irreversibility of the different components of a conventional Brayton cycle system and a solar concentration system through energy and exergy considerations. The environmental conditions of Barranquilla are used for the plant analysis using different working fluids throughout the day, where the carbon dioxide cycle presents an overall efficiency of 28.8 %, the cycle with air efficiency is 26.6 %, and the Helium cycle is 20.2 %. The model considers the energy flows within the plant and the exergy destruction. In this sense, the solar concentration system contributes an energy fraction of 0.209 when operating with air, while the exergy destruction fraction is 0.189 when operating with carbon dioxide when solar radiation is maximum. Finally, an estimation of the Levelized Cost of Energy is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.