Abstract
In order to pursue superior cycle efficiency and lower power generation cost for the CSP plants, two S-CO2–Brayton–cycle–based power cycles with different utilization methods of the residual heat recover of the top S-CO2 Brayton cycle (SCBC) are investigated to seek alternatives to the stand-alone S-CO2 cycle as the power block of concentrated solar power plants. The residual heat released by the top S-CO2 cycle are either utilized to drive a LiBr absorption chiller (AC) for further chilling of the CO2 fluids exiting the precooler before entering the main compressor inlet temperature or recovered by an organic rankine cycle (ORC) for generating electricity. Thermo-economic analysis and optimization are performed for the SCBC–AC and SCBC–ORC, respectively. The results show that the thermal and exergetic efficiencies of the SCBC–AC are comparable with those of the SCBC–ORC in low pressure ratio conditions (PR<2.7) but are apparently lower than SCBC–ORC when PR is over 2.7. The LCOE of the CSP plant integrated with SCBC–AC is more sensitive to the change of PR. The optimal PR to maximum the cycle efficiency or minimize the plant LCOE for the SCBC–ORC is higher than that for the SCBC–AC, while the optimal recuperator effectiveness to minimize the LCOE of CSP plant integrated with SCBC–ORC is lower than that of SCBC–AC. The optimization results show that the thermo-economic performance of the SCBC–AC is comparable to that of the SCBC–ORC. Significant ηex improvement and LCOE reduction can be obtained by both the two combined cycles relative to the stand-alone S-CO2 cycle. The maximal ηex improvements obtained by the SCBC–ORC and SCBC–AC are 6.83% and 4.12%, respectively. The maximal LCOE reduction obtained by the SCBC-ORC and SCBC–AC are 0.70 ȼ / (kW·h) and 0.60 ȼ / (kW·h), respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.