Abstract
Low-temperature anaerobic methane conversion to methanol (MTM) using copper ion-exchanged mordenite (Cu-MOR) as the catalyst and water as the sole source of oxygen is promising for sustainable utilization of methane. Integrating in situ calorimetric, spectroscopic, and structural methodologies, we report a systematic study on energetics of water-cationic species-framework guest-host interactions as a function of water loading for several mordenites relevant to low-temperature MTM. Notably, the near-zero coverage hydration enthalpy on Cu-MOR is -133.1 ± 6.0 kJ/mol water, which is related to Cu-MOR regeneration using water as oxidant. The copper oxo sites are thermally stable up to 915 °C and remain chemically intact as an oxygen source after complete hydration and dehydration. This study underscores the importance of manipulating the oxidation state and coordination chemistry of transition metal guest species in zeolites by fine-tuning the partial pressure of water as a strategy for rational design, synthesis, and modification of catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.