Abstract

Assuming that the background geometry is filled with a free gas consisting of matter and radiation and that no phase transitions are occurring in the early universe, we discuss the thermodynamics of this closed system using classical approaches. We find that essential cosmological quantities, such as the Hubble parameter H, scale factor a, and curvature parameter k, can be derived from this simple model. On one hand, it obeys the laws of thermodynamics entirely. On the other hand, the results are compatible with the Friedmann–Lemaitre–Robertson–Walker model and the Einstein field equations. The inclusion of a finite bulk viscosity coefficient derives important changes in all of these cosmological quantities. The thermodynamics of the viscous universe is studied and a conservation law is found. Accordingly, our picture of the evolution of the early universe and its astrophysical consequences seems to be the subject of radical revision. We find that the parameter k, for instance, strongly depends on the thermodynamics of the background matter. The time scale, at which a negative curvature might take place, depends on the relation between the matter content and the total energy. Using quantum and statistical approaches, we assume that the size of the universe is given by the volume occupied by one particle and one photon. Different types of interactions between matter and photon are taken into account. In this quantum treatment, expressions for H and a are also introduced. Therefore, the expansion of the universe turns out to be accessible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call