Abstract

Vaporization-condensation processes can generate radioactive aerosols in the event of a core dryout and meltdown accident at a nuclear power station. The time sequence of fission produce vaporization and aerosol formation in relation to processes that can transport them out of the reactor containment is important for assessing their potential biohazard. Thermodynamics of vaporization of fission products and other materials are evaluated for the extreme environmental conditions projected by computer models if a molten core penetrates the reactor vessel and melts into the concrete base. A free energy minimization treatment was used to estimate partial pressures of gases in this many-component, multiphase system. The amounts of fission products and condensable materials vaporized were calculated for a test case involving basalt-aggregate concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call