Abstract
We consider a Friedmann–Robertson–Walker (FRW) universe filled by a dark energy (DE) candidate together with other possible sources which may include the baryonic and nonbaryonic matters. Thereinafter, we consider a situation in which the cosmos sectors do not interact with each other. By applying the unified first law of thermodynamics on the apparent horizon of the FRW universe, we show that the DE candidate may modify the apparent horizon entropy and thus the Bekenstein limit. Moreover, we generalize our study to the models in which the cosmos sectors have a mutual interaction. Our final result indicates that the mutual interaction between the cosmos sectors may add an additional term to the apparent horizon entropy leading to modify the Bekenstein limit. Relationships with previous works have been addressed throughout the paper. Finally, we investigate the validity of the second law of thermodynamics and its generalized form in the interacting and noninteracting cosmoses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.