Abstract
The thermodynamic parameters of the complexes of Th with N-methylethylenediamine-N,Nʹ,Nʹ-triacetic acid (MEDTA; denoted as H3L with three dissociable protons) were studied. Potentiometry and microcalorimetry were used to determine formation constants and enthalpies, respectively. Thermodynamic analysis revealed two successively formed complexes, namely, ThL+ and ThL22− (L3− denotes the totally deprotonated MEDTA). Results indicated that both complexation reactions were exothermic and driven by entropic force. The first stepwise reaction (Th4+ + L3− = ThL+) was mainly driven by entropy with minimal effect on enthalpy change. The second stepwise reaction (ThL+ + L3− = ThL22−) was more exothermic and showed less entropic change than the first stepwise reaction. The strong chelation of MEDTA would inhibit the hydrolysis of Th4+ and increase solubility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.