Abstract

Two peptide fragments from tuna cytochrome c (cyt c), N-fragment (residues 1-44 containing the heme) and C-fragment (residues 45-103), combine to form a 1:1 fragment complex. This was clearly proved by ion-spray mass spectrometry. It was found from CD and NMR spectra that the structure of the fragment complex formed is similar to that of an intact cyt c, although each isolated fragment itself is unstructured. Binding constants and enthalpies upon the complex formation were directly observed by isothermal titration calorimetry. Thermodynamic parameters (deltaG(o)b, deltaHb, deltaS(o)b, and deltaC(b)p)) associated with the complex formation were determined at various pHs and temperatures. DeltaHb was found to be almost independent of pH values. The change in heat capacity accompanying the complex formation (deltaC(b)p) was directly determined from the temperature dependence of deltaHb. In addition, the change in heat capacity and enthalpy upon tuna cyt c unfolding were determined by differential scanning calorimetry. Thermodynamic parameters for the unfolding/dissociation process of the fragment complex were compared with those for cyt c unfolding at pH 3.9 and 303 K. In a comparison of two unfolding processes, the heat capacity change of each was very close to the other, while both the unfolding enthalpy and entropy of the fragment complex were larger than those of tuna cyt c. These thermodynamic data suggest that the internal interactions between polar groups (hydrogen bonding) and nonpolar groups (van der Waals interactions) are preserved in the fragment complex as well as in the native state of cyt c.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.