Abstract

Electromotive force measurements have been made using the cell $$\mbox{In(s)}|\mbox{HCl }(m_{\mathrm{A}}),\mbox{InCl}_{3}(m_{\mathrm{B}}),\mbox{H}_{2}\mbox{O}|\mbox{AgCl, Ag}$$ in the ionic strength range of I=0.05, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mol⋅kg−1 at 25 °C. The value of E o, the standard potential of the In/In3+ electrode, has been determined at 25 °C. Our value of E o (−0.3371 V) at 25 °C obtained from our measurements is in good agreement with −0.336 (Hakomori, J. Am. Chem. Soc. 52: 2372–2376, 1930) and −0.3382 V (Covington et al., J. Chem. Soc. 4394–4401, 1963). The activity coefficients of InCl3 as well as Harned interaction coefficients have been determined at 25 °C for each of the experimental ionic strengths at ionic strength fractions of 0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 of HCl. Harned’s rule for the salt is obeyed at I=0.05,0.1 and 0.25 mol⋅kg−1 but the quadratic terms are needed for higher ionic strengths. These data, together with others for the activity coefficient of HCl in the same solutions, have been treated by the ion-interaction (Pitzer, Activity Coefficients in Electrolyte Solutions, CRC Press, 1991) equations in a previous publication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.