Abstract

We present a perturbation theory for studying thermodynamic properties of the Kondo spin liquid phase of the half-filled Kondo lattice model. The grand partition function is derived to calculate chemical potential, spin and charge susceptibilities and specific heat. The treatment is applicable to the model with strong couplings in any dimensions (one, two and three dimensions). The chemical potential equals zero at any temperatures, satisfying the requirement of the particle-hole symmetry. Thermally activated behaviors of the spin(charge) susceptibility due to the spin(quasiparticle) gap can be seen and the two-peak structure of the specific heat is obtained. The same treatment to the periodic Anderson model around atomic limit is also briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.