Abstract
The structural and thermodynamic properties of the donor-acceptor (DA) complexes of Group 13 metal halides (MX3) with ethylenediamine and their decomposition products have been studied theoretically at the B3LYP/LANL2DZ(d,p) level of theory. Gas-phase dissociation into various components and HX elimination reactions are considered. Both processes are endothermic but favored by entropy. Complexes of 2:1 composition are predicted to be stable in the gas phase up to 640-1000 K. It is found that complexation with the second acceptor molecule lowers the HX elimination enthalpy; in turn, HX elimination increases DA bonding with a second MX3 molecule. Exceptionally high values of the dissociation enthalpies (310-390 kJ mol(-1)) and HX elimination reactions (360-420 kJ mol(-1)) of the amido compounds MX2NHC2H4NH2 and MX2NHC2H4NHMX2 make them important intermediates in the decomposition processes. Dissociation reactions of the complexes are more favorable than HX elimination reactions; however, the subsequent oligomerization and cyclization processes of coordinationally unsaturated amido and imido compounds may facilitate HX elimination. Since HI elimination reactions are predicted to be the least endothermic, and aluminum-containing compounds have the strongest M-N dissociation enthalpies, it is expected that compounds based on aluminum iodide are promising objects for experimental studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.