Abstract

Abstract Steady-state, time-resolved fluorescence, Induced Circular Dichroism (ICD), Molecular Mechanics and Molecular Dynamics techniques have been employed in the study of the complexation of dimethyl 2,6-naphthalenedicarboxylate (DMN), a fluorescent probe, with mono- and bisβCD derivatives whose appended group, or βCD spacer, contain the 1,3-diphenoxy moiety (OB), i.e., 6[4-((3-(prop-2-ynyloxy)phenoxy)methyl]-1H-1,2,3-triazol-1-yl]6-deoxy-βCD (mβCD) and 1,3-bis((1-(6′-βCD-6′-yl)-1H-1,2,3-triazol-4-yl)methoxy)benzene (bβCD). The study also considers complexation with the native βCD partner. The DMN emission spectrum shows two overlapping electronic bands whose ratio of intensities, R, is very sensitive to the polarity of the medium surrounding it. The stoichiometry, the formation constants of the complexes and the ΔH and ΔS parameters upon inclusion were obtained from the change in R and weighted average lifetime, 〈τ〉, with CD concentration and temperature. DMN forms 1:1 and 2:1 stoichiometry complexes with bβCD, but does not with mβCD. Molecular modelling was also used to emulate the complexation processes in the presence of water. The 1:1 and 2:1 DMN/bβCD complex structures agree with the signs of enthalpy and entropy changes. Quenching, R at infinite bβCD concentration, fluorescence depolarization measurements and ICD spectra also support the proposed structures. Inclusion is mostly dominated by van der Waals interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.