Abstract

Friction is a dissipative irreversible process; therefore, entropy is produced during frictional contact. The rate of entropy production can serve as a measure of degradation (e.g. wear). However, in many cases friction leads to self-organization at the surface. This is because the excess entropy is either driven away from the surface, or it is released at the nanoscale, while the mesoscale entropy decreases. As a result, the orderliness at the surface grows. Self-organization leads to surface secondary structures either due to the mutual adjustment of the contacting surfaces (e.g. by wear) or due to the formation of regular deformation patterns, such as friction-induced slip waves caused by dynamic instabilities. The effect has practical applications, since self-organization is usually beneficial because it leads to friction and wear reduction (minimum entropy production rate at the self-organized state). Self-organization is common in biological systems, including self-healing and self-cleaning surfaces. Therefore, designing a successful biomimetic surface requires an understanding of the thermodynamics of frictional self-organization. We suggest a multiscale decomposition of entropy and formulate a thermodynamic framework for irreversible degradation and for self-organization during friction. The criteria for self-organization due to dynamic instabilities are discussed, as well as the principles of biomimetic self-cleaning, self-lubricating and self-repairing surfaces by encapsulation and micro/nanopatterning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call