Abstract

A thermodynamic approach for modeling the phase equilibrium of multicomponent fluid mixtures under the influence of an applied shear rate (shear stress) is presented. This approach is based on assuming that, for the modeled mixtures, the viscosity variation with shear rate can be well‐described by using a power law. This framework is then used for predicting the influence of shear rate on the critical temperature, critical pressure, and spinodal curve of several Newtonian multicomponent hydrocarbon mixtures; giving as a result that for these kind of mixtures and depending on the composition, the critical temperature exhibits both an upward and downward shift with shear rate, whereas the critical pressure always exhibits a downward trend. Both a suppression of the liquid–liquid transition and shrinkage of the spinodal curves (mixing effect) are also predicted. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4383–4389, 2013

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.