Abstract

According to some quantum gravity models, Lorentz invariance can be violated in the Planck energy scale. With this motivation, we analyze the thermal quantities and the stability of Schwarzschild black hole surrounded by quintessence in gravity's rainbow formalism. To do that, we consider the rainbow functions which are motivated by loop quantum gravity and gamma-ray bursts, and we derive Hawking temperature, specific heat, entropy and the equation of state function. We observe that the presence the quintessence matter field and rainbow gravity affect the stability of the black hole.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.