Abstract
Let L1, L2, L3 be three well established (i.e. well tested with experimental observations) levels of description, ordered from the most micro- scopic to the least microscopic, on which mesoscopic dynamics of macro- scopic systems is formulated. Let Eqs1; Eqs2; Eqs3 be the time evolution equations on the three levels. By comparing solutions to these three systems of equations we find reductions L1 → L2 → L3 and L1 → L3 consisting of: (i) relations Eqs1 → Eqs2 → Eqs3 and Eqs1 → Eqs3, (ii) relations P1 → P2 → P3 and P1 → P3, where P stands for material parameters, i.e. the parameters with which the individual nature of the system under consideration is expressed in the time evolution equations, and (iii) six entropies, namely s(1→2), s(1→3), s(2→3) and S(3←1), S(3←2) ,S(2←1). The entropies s(i→j); i < j are potentials generating the approach of the level Li to the level Lj and S(i←j); i > j are the entropies s(j→i) evaluated at the states on the level Li that are reached in the approach Lj → Li. These six entropies represent the multiscale thermodynamics corresponding to the sequence of levels L1, L2, L3. In the particular case when L3 is the level used in the classical equilibrium thermodynamics then S(3←2) and S(3←1) are the classical equilibrium entropies. I will illustrate such multiscale thermodynamics (and provide some of its applications) on the example of L1 level of description used in the Catteneo heat conduction theory, L2 level of description used in the Fourier heat conduction theory, and L3 level of description used in the classical equilibrium thermodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.