Abstract

We report two results complementing the second law of thermodynamics for Markovian open quantum systems coupled to multiple reservoirs with different temperatures and chemical potentials. First, we derive a nonequilibrium free energy inequality providing an upper bound for a maximum power output, which for systems with inhomogeneous temperature is not equivalent to the Clausius inequality. Second, we derive local Clausius and free energy inequalities for subsystems of a composite system. These inequalities differ from the total system one by the presence of an information-related contribution and build the ground for thermodynamics of quantum information processing. Our theory is used to study an autonomous Maxwell demon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.