Abstract

During the photocycle of bacteriorhodopsin (BR) the chromophore, a retinal Schiff base, is deprotonated. Simultaneously an asp residue is protonated. These results suggest that this deprotonation occurs via a Schiff base - asp hydrogen bond. Therefore, we studied carboxylic acid - retinal Schiff base model systems in CCl4 using IR spectroscopy. The IR spectra show that double minimum proton potentials are present in the OH ... N in equilibrium with O- ... HN+ H-bonds formed and that the proton can easily be shifted in these bonds by local electrical fields. The thermodynamic data of H-bond formation and proton transfer within these H-bonds are determined. On the basis of these data a hypothesis is developed with regard to the molecular mechanism of the deprotonation of the Schiff base of BR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.