Abstract

Multicopper oxidases (MCOs) utilize a tricopper active site to reduce dioxygen to water through 4H+ 4e- proton-coupled electron transfer (PCET). Understanding the thermodynamics of PCET at a tricopper cluster is essential for elucidating how MCOs harness the oxidative power of O2 while mitigating oxidative damage. In this study, we determined the O-H bond dissociation free energies (BDFEs) and pKa values of a series of tricopper hydroxo and tricopper aqua complexes as synthetic models of the tricopper site in MCOs. Tricopper intermediates on the path of alternating electron and proton transfer (ET-PT-ET-PT-ET) have modest BDFE(O-H) values in the range of 53.0-57.1 kcal/mol. In contrast, those not on the path of ET-PT-ET-PT-ET display much higher (78.1 kcal/mol) or lower (44.7 kcal/mol) BDFE(O-H) values. Additionally, the pKa of bridging OH and OH2 motifs increase by 8-16 pKa units per oxidation state. The same oxidation state changes have a lesser impact on the pKa of N-H motif in the secondary coordination sphere, with an increase of ca. 5 pKa units per oxidation state. The steeper pKa increase of the tricopper center promotes proton transfer from the secondary coordination sphere. Overall, our study shed light on the PCET pathway least prone to decomposition, elucidating why tricopper centers are an optimal choice for promoting efficient oxygen reduction reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call