Abstract

AbstractThermodynamic properties of peptide nucleic acids (PNA) and their complexes with nucleic acids have attracted increasing attention. More detailed thermodynamic information is desired in order to understand and improve the behavior of PNAs in various contexts, e.g., in the design of polymerase chain reaction (PCR) probes and potentially for the use of PNA in therapeutics. The ultimate goal is to predict the thermodynamic properties of PNA-nucleic acid complexes of any sequence. For DNA and RNA thermodynamics, this has been achieved for relatively short (10–30 base pairs) doublestranded complexes (duplexes). These studies have yielded nearest neighbor parameters (ΔH° and ΔS°) for all possible combinations of base pairs in DNA and RNA (1), as well as for single mismatches in DNA (2).KeywordsDifferential Scanning CalorimetryThermodynamic ParameterMelting CurveSingle StrandPeptide Nucleic AcidThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call