Abstract

This article reviews recent advances in our understanding of how temperature affects the structure and the phase of multimetallic nanoparticles. Focusing on bimetallic systems, we discuss the interplay of size, shape and chemical order on the stable configurations at thermal equilibrium. Besides some considerations about experimental evidence for thermally-induced transformations, most insight is generally gained from theory and computation. The perspectives offered by mesoscopic approaches (i.e. corrected from the bulk) and atomistic simulations complement each other and often provide detailed information about the respective roles of coordination, composition and more generally surface effects to be evaluated. Order-disorder transitions and the melting phase change are strongly altered in nanoscale systems, and we describe how they possibly impact entire phase diagrams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.