Abstract
Deformations of minimal surfaces lying in constant-time slices in static space-times are studied. An exact and universal formula for a change of the area of a minimal surface under shifts of nearby pointlike particles is found. It allows one to introduce a local temperature on the surface and represent variations of its area in a thermodynamical form by assuming that the entropy in the Planck units equals the quarter of the area. These results provide a strong support to a recent hypothesis that gravity has an entropic origin, the minimal surfaces being a sort of holographic screens. The gravitational entropy also acquires a definite physical meaning related to quantum entanglement of fundamental degrees of freedom across the screen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.