Abstract

Three equilibria involved in metallocene catalyst activation, including dissociation of R6Al2 (R = Me, Et or i-Bu) and related species such as [L2ZrMe2AlMe2][B(C6F5)4] (L2 = Cp2, 1,2-ethylenebis(η5-indenyl), Me2C(η5-C5H4)2) or [(L2ZrMe)2μ-Me][MePBB] (L2 = (h5-1,2-Me2C5H3)2, [MePBB]- = [MeB(ArF)3]- with ArF = o-C6F5-C6F4) are studied by DFT using various approaches to account for the enthalpy and entropy changes in gas and condensed phases. These studies reveal that both low energy vibrations and translational entropy conspire to cause significant deviations between theory and experiment when it comes to the free energy change in condensed or even gas phase. Alignment of theory with experiment requires in addition, consideration of specific solvation of reactants and products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.