Abstract

We study the thermodynamics of nanoscale polar structures in PbTiO3/SrTiO3 ferroelectric superlattices induced by above-bandgap optical excitation using a phase-field model explicitly considering both structural and electronic processes. We demonstrate that the light-excited carriers provide the charge compensation of polarization bound charges and the lattice thermal energy, both of which are key to the thermodynamic stabilization of a previously observed supercrystal, a three-dimensionally periodic nanostructure, within a window of substrate strains, while different mechanical and electrical boundary conditions can stabilize a number of other nanoscale polar structures by balancing the competing short-range exchange interactions responsible for the domain wall energy and long-range electrostatic and elastic interactions. The insights into the light-induced formation and richness of nanoscale structures from this work offer theoretical guidance for exploring and manipulating the thermodynamic stability of nanoscale polar structures employing a combination of thermal, mechanical, and electrical stimuli as well as light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call