Abstract
We study a thermodynamical description of the interaction between new agegraphic dark energy (NADE) and dark matter (DM) in an anisotropic universe. We find expressions for the entropy changes of these dark energy (DE) candidates. In addition, considering thermal fluctuations, thermodynamics of the DE component interacting with a DM sector is addressed. We also show that if one wants to solve the coincidence problem by using this mutual interaction, then the coupling constants of the interaction will be constrained. Finally, we obtain a physical expression for the interaction which is consistent with phenomenological descriptions and passes reasonably well the observational tests. Our study shows that, with the local equilibrium assumption, the generalized second law of thermodynamics is fulfilled in a region enclosed by the apparent horizon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.