Abstract

We calculate the entropy in a trapped, resonantly interacting Fermi gas as a function of temperature for a wide range of magnetic fields between the BCS and Bose-Einstein condensation end points. This provides a basis for the important technique of adiabatic sweep thermometry and serves to characterize quantitatively the evolution and nature of the excitations of the gas. The results are then used to calibrate the temperature in several ground breaking experiments on (6)Li and (40)K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.