Abstract
The thermodynamics of 10 industrially-important, enzyme-catalyzed reactions are examined. The reactions discussed are: the conversions of penicillin G to 6-amino-penicillinic acid using the enzyme penicillin acylase; starch to glucose using amylases; glucose to fructose using glucose (xylose) isomerase; cellulose to glucose using cellulase; fumaric acid and ammonia to L-aspartic acid using L-aspartase; transcinnamic acid and ammonia to L-phenylalanine using L-phenylalanine ammonia lyase; L-histidine to urocanic acid and ammonia using L-histidine ammonia lyase; lactose to glucose and galactose using lactase; and the reactions catalyzed by amino acylases and proteases. The selection of these processes was based on the economic value of the products and their intrinsic industrial importance. The available thermodynamic properties, such as equilibrium constants, Gibbs energies (delta G degrees), enthalphies (delta H degrees), and heat capacity changes (delta Cp degrees) of these enzyme-catalyzed reactions, are reviewed and summarized. Recommendations are made for future research in this area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.