Abstract

Within the scope of the self-consistent field and mean (‘‘molecular’’) self-consistent field approximations, applying the static concentration wave method, the thermodynamics of f.c.c.-Ni–Fe alloys undergoing the static applied magnetic field effects is studied in detail. Under such conditions, the analytical corrections to expressions for the configuration-dependent part of free energy of macroscopically ferromagneticL12-Ni3Fe-type orL10-NiFe-type ordering phases are taken into account. The obtained results for thermodynamically equilibrium states are compared with the refined phase diagram for f.c.c.-Ni–Fe alloys calculated recently without taking into account the applied magnetic field effects. Considering the specific character of microscopic structure of the magnetic and atomic orders in f.c.c.-Ni–Fe alloys, the changes of shape (and in arrangement) of order-disorder phase-transformation curves (Kurnakov points) are thoroughly analysed. A special attention is addressed to the investigation of the concentration, temperature, and magnetic-field induction-dependent atomic and magnetic long-range order parameters, especially, near their critical points. As revealed unambiguously, influence of a static applied magnetic field promotes the elevation of Kurnakov points for all the atomically ordering phases that is in an overall agreement with reliable experimental data. On the base of revealed phenomenon, the magneto external field analog-to-digital converter of the monochromatic radiations (X-rays or thermal neutrons) is hypothesized as a claim.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.