Abstract

Aqueous solubility of calcium l-lactate, calcium d-gluconate, and calcium d-lactobionate increases with temperature (10-30 °C investigated), most significantly for the least soluble d-gluconate, while the calcium ion activity of the saturated solutions decreases with temperature, as measured electrochemically, most significantly for the most soluble d-lactobionate. This unusual behavior is discussed in relation to dairy processing and explained by endothermic binding of calcium to hydroxycarboxylate anions determined to have ΔH°ass = (31 ± 3) kJ·mol(-1) for l-lactate, (34 ± 2) kJ·mol(-1) for d-gluconate, and (29 ± 3) kJ·mol(-1) for d-lactobionate in 1:1 complexes with thermodynamic binding constants at 25 °C of Kass = 49 (l-lactate), 88 (d-gluconate), and 140 (d-lactobionate). Quantum mechanical calculations within density functional theory (DFT) confirm the ordering of strength of binding. The complex formation is entropy driven with ΔS°ass > 0, resulting in decreasing calcium ion activity in aqueous solutions for increasing temperature, even for the saturated solutions despite increasing solubility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.