Abstract

We study thermodynamics of nuclear matter in a two-flavored parity doublet model within the mean field approximation. Parameters of the model are chosen to reproduce correctly the properties of the nuclear ground state. The model predicts two phase transitions in nuclear matter, a liquid-gas phase transition at normal nuclear density and a chiral transition at higher density. At finite temperature the pion decay constant exhibits a considerable reduction at intermediate values of chemical potential, which is traced back to the presence of the liquid-gas transition, and approaches zero at higher chemical potential associated with the chiral symmetry restoration. A "transition" from meson-rich to baryon-rich matter is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.