Abstract

The study of thermodynamics in the view of the Hamiltonian approach is the newest tool to analyze the thermodynamic properties of the black holes (BHs). In this paper, we investigate the thermodynamics of d-dimensional [Formula: see text] asymptotically Anti-de Sitter (AdS) BHs. A thermodynamic representation based on symplectic geometry is introduced in this paper. We extend the thermodynamics of d-dimensional charged AdS BHs in the views of a Hamiltonian approach. Firstly, we study the thermodynamics in reduced phase space and correlate with the Schwarzschild solution. Then we enhance it in the extended phase space. In an extended phase space, the thermodynamic equations of state are stated as constraints. We apply the canonical transformation to analyze the thermodynamics of the said type of BHs. We plot [Formula: see text]-[Formula: see text] diagrams for different dimensions d taking the temperatures [Formula: see text], [Formula: see text] and [Formula: see text] and analyze the natures of the graphs and the dependences on d. In these diagrams, we point out the regions of coexistence. We also examine the phase transition by applying “Maxwell’s equal area law” of the said BHs. Here, we find the regions of coexistence of two phases which are also depicted graphically. Finally, we derive the “Clapeyron equation” and investigate the latent heat of isothermal phase transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call