Abstract
The temperature dependence of the heat capacity of cross-linked and branched (co)polymers based on tris- and bis-(pentafluorophenyl)germanes is studied in the temperature range of 6–7 to 535–570 K, using adiabatic vacuum and differential scanning calorimeters. In the indicated temperature range, physical transformations are revealed and their thermodynamic characteristics are determined. The obtained experimental data are used to calculate the thermodynamic functions of (co)polymers: Cp/°, H°(T) - H°(0), S°(T) - S°(0), and G°(T) - H°(0) in the range of T → 0 to 535 K for the branched (co)polymer and from T → 0 to 500 K for the cross-linked polymer. Their standard entropies of formation are determined at 298.15 K. The obtained results are compared with analogous data for hyperbranched perfluorinated polyphenylenegermane studied earlier. The effect of the structure of polyphenylenegermanes on their thermodynamic properties is analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.