Abstract

Stability constants of Na+ complexes with 18-crown-6-ether and thermodynamic characteristics of the complex formation in water and mixed water-dioxane solvents (0.2, 0.4, 0.6, and 0.8 wt. fraction of dioxane, 283-318 K) were determined by the method of EMF of galvanic circuits without transfer. Comparative thermodynamic analysis of the complex 18-crown-6Na+ formation reactions in water-dioxane, water-acetonitrile, water-acetone, water-methanol, and water-2-propanol mixtures was carried out. Contributions of the Gibbs energies of transfer (ΔG t) of 18-crown-6Na+, Na+, and the ligand to the increase in the stability of the complexes on replacement of water by mixed water-dioxane solvents were estimated. It was shown that the increase in the stability of sodium crown ether complexes primarily depends on solvation of the complex cation and desolvation of the central cation. Changes in the conformational Gibbs energy of the ligand and quantitative parameters of selective solvation of the reagents were estimated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.