Abstract

Modern drug discovery usually involves the rapid screening of large numbers of compounds, either individually or in resolvable mixtures. These compounds may be complex and lead-like or may be small fragments representing optimal scaffolds. Several methods are suitable for detecting binding interactions based on a wide range of different physical platforms. However, the use of thermodynamic measurements has a role to play both in the high-throughput identification of binders and also in the fundamental understanding of molecular interaction, which is central to rational drug design. This review describes the benefits and drawbacks of using thermodynamic characterisation of binding interactions at various stages in the rational drug design process and highlights future opportunities for advances in instrumentation and methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call