Abstract
A thermodynamic theory of association to a molecule immobilized near a surface has been developed. Exact equations for the binding enthalpy, entropy and equilibrium reaction constant for an immobilized complex are derived. Using linear Poisson–Boltzmann theory of the electric double-layer interaction between an ion-penetrable sphere and a hard plate allows a closed form evaluation. We briefly discuss application of the theory to a DNA chip at high (1 M NaCl) and low (0.01 M NaCl) ionic strength for dielectric and metallic substrates. Predicted strong electrostatic effects suggest the feasibility of electronic control of DNA hybridization and design of chips avoiding the DNA folding problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.