Abstract

Apocytochrome b5 from rabbit liver was studied by scanning calorimetry, limited proteolysis, circular dichroism, second derivative spectroscopy, and size exclusion chromatography. The protein is able to undergo a reversible two-state thermal transition. However, transition temperature, denaturational enthalpy, and heat capacity change are reduced compared with the holoprotein. Apocytochrome b5 stability in terms of Gibbs energy change at protein unfolding (delta G) amounts to delta G = 7 +/- 1 kJ/mol at 25 degrees C (pH 7.4) compared with delta G = 25 kJ/mol for the holoprotein. Apocytochrome b5 is a compact, native-like protein. According to the spectral data, the cooperative structure is mainly based in the core region formed by residues 1-35 and 79-90. This finding is in full agreement with NMR data (Moore, C.D. & Lecomte, J.T.J., 1993, Biochemistry 32, 199-207).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.