Abstract

We present theoretical aspects concerning the thermodynamics of an ideal bosonic gas trapped by a potential. Working in the Grand Canonical ensemble we are able to properly identify the extensive thermodynamic variable equivalent to the and the intensive thermodynamic variable equivalent to the pressure. These are called the harmonic volume and the harmonic pressure and their physical meaning is discussed. With these variables, the problem of Bose-Einstein condensation is studied in terms of the behavior of the corresponding equation of state and in terms of measurable susceptibilities such as the heat capacities, the isothermal compressibility and the coefficient of thermal expansion. From the analysis, an interesting analogy with Black-Body radiation emerges, showing that at and below the critical temperature, the non-condensate fraction of atoms behaves thermodynamically like a gas of massless particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.