Abstract

We explore the thermodynamic and global structural properties of a local patch of an accretion disk whose parameters were chosen so that radiation pressure and gas pressure would be comparable in magnitude. Heating, radiative transport, and cooling are computed self-consistently with the structure by solving the equations of radiation MHD in the shearing-box approximation. Using a fully 3-d and energy-conserving code, we compute the structure and energy balance of this disk segment over a span of more than forty cooling times. As is also true when gas pressure dominates, the disk's upper atmosphere is magnetically-supported. However, unlike the gas-dominated case, no steady-state is reached; instead, the total (i.e., radiation plus gas) energy content fluctuates by factors of 3--4 over timescales of several tens of orbits, with no secular trend. Because the radiation pressure varies much more than the gas pressure, the ratio of radiation pressure to gas pressure varies over the approximate range 0.5--2. The volume-integrated dissipation rate generally increases with increasing total energy, but the mean trend is somewhat slower than linear, and the instantaneous dissipation rate is often a factor of two larger or smaller than the mean for that total energy level. Locally, the dissipation rate per unit volume scales approximately in proportion to the current density; the time-average dissipation rate per unit mass is proportional to m^{-1/2}, where m is the horizontally-averaged mass column density to the nearer of the top or bottom surface. As in our earlier study of a gas-dominated shearing-box, we find that energy transport is completely dominated by radiative diffusion, with Poynting flux carrying less than 1% of the energy lost from the box.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.