Abstract

The ABO3-type perovskite manganites, cobaltates, and ferrates (A= La, Sr, Ca; B=Mn, Co, Fe) are important functional materials which have numerous high-tech applications due to their outstanding magnetic and electrical properties, such as colossal magnetoresistance, half-metallic behavior, and composition-dependent metal-insulator transition (Coey et al., 1999; Haghiri-Gosnet & Renard, 2003). Owing to high electronic and ionic conductivities. these materials show also excellent electrochemical performance, thermal and chemical stability, as well as compatibility with widely used electrolyte based on yttrium-stabilized zirconia (YSZ). Therefore they are among the most promising materials as cathodes in solid oxide fuel Cells (SOFCs) (Fleig et al., 2003) and gas-permeation membranes (Zhou, 2009). Many of the above-mentioned applications require understanding and control of surface properties. An important example is LaMnO3 (LMO). Pure LMO has a cubic structure above 750 K, whereas below this temperature the crystalline structure is orthorhombic, with four formula units in a primitive cell. Doping of LMO with Sr allows one to increase both the ionic and electronic conductivity as well as to stabilize the cubic structure down to room temperatures necessary conditions for improving catalytic performance of LMO in electrochemical devices, e.g. cathodes for SOFCs. In optimal compositions of

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.