Abstract

Recently, a morphological transition in the velocity distribution of a relativistic gas has been pointed out which shows hallmarks of a critical phenomenon. Here, we provide a general framework which allows for a thermodynamic approach to such a critical phenomenon. We therefore construct a thermodynamic potential which upon expansion leads to Landau-like (mean-field) theory of phase transition. We are therefore able to calculate critical exponents and explain the spontaneous emergence of “order parameter” as a result of relativistic constraints. Numerical solutions which confirm our thermodynamic approach are also provided. Our approach provides a general understanding of such a transition as well as leading to some new results. Finally, we briefly discuss some possible physical consequences of our results as well as considering the case of quantum relativistic gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.