Abstract

By looking at the Lovelock theorem one can infer that the gravity model given by [1] cannot be applicable for all types of 4D Einstein–Gauss–Bonnet (EGB) curved space-time. The reason for this is that in 4D space-time, the Gauss–Bonnet invariant is a total derivative and hence it does not contribute to gravitational dynamics. Hence, the authors of [2] presented an alternative consistent EGB gravity model instead of [1] by applying a break-of-diffeomorphism property. In this work, we use the alternative model to produce a de Sitter (dS)/Anti-de Sitter (AdS) black hole metric and then investigate its thermodynamic behavior in the presence of a cloud of Nambu–Goto strings. Mathematical derivations show that the resulting diagrams of pressure vs specific volume at a constant temperature are similar to that for a van der Waals gas/fluid in an ordinary thermodynamic system in the dS sector but not in the AdS background. From this, we infer that the black hole participates in the small-to-large black hole phase transition in the dS background, while it exhibits a Hawking–Page phase transition in the AdS background. In the latter case, an evaporating black hole eventually reaches an AdS vacuum space because of its instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.