Abstract

Supercritical fluids have intriguing behaviors at extreme pressure and temperature conditions, prompting the need for thermodynamic properties of supercritical fluid xenon (SCF) under shock compression. Double-shock experimental data on SCF xenon in the 140 GPa pressure range were directly measured by means of a multi-channel pyrometer and a Doppler-pins-system. It entered the so-called warm dense region. We found that the shock compressed SCF Xe had higher dynamic compression and higher number density than that of liquid Xe at same shock pressure. The larger compressibility of SCF Xe in our experiments could be explained that the increase of electronic excitations and ionizations leaded to a large drop of thermal pressure and a softening of Hugoniot. The high pressure phase diagram of xenon was depicted with the aid of the degeneracy, coupling parameter, and current available experiments on the pressure-temperature plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.