Abstract

Cumulative hazard and cumulative damage are important models for reliability and structural integrity assessment. This article reviews a previously developed thermodynamic entropy–based damage model and derives and demonstrates an equivalent reliability function. As such, a thermodynamically inspired approach to developing new definitions of cumulative hazard, cumulative damage, and life models of structures and components based on the second law of thermodynamics is presented. The article defines a new unified measure of damage in terms of energy dissipation associated with multiple interacting irreversible processes that represent the underlying failure mechanisms that cause damage and failure. Since energy dissipation leads to entropy generation in materials, it has been shown and experimentally demonstrated that the use of the total entropy generated in any degradation process is measurable and can ultimately be used to represent the time of failure of structures and components. This description therefore connects the second law of thermodynamics to the conventional models of reliability used in life assessment. Any variability in the entropic endurance to failure and uncertainties about the parameters of the entropic-based damage model lead to the time-to-failure distribution. In comparison with the conventional probabilistic reliability methods, deriving the reliability function in terms of the entropy generation can offer a general and more fundamental approach to representation of reliability. The entropic-based theory of damage and the equivalent reliability approach are demonstrated and confirmed experimentally by applying the complex interactive corrosion-fatigue degradation mechanism to samples of aluminum materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.