Abstract
Recently, the non-trivial solutions for 4-dimensional black holes of Einstein-Gauss-Bonnet gravity had been discovered. In this paper, considering a charged particle entering into a 4-dimensional Gauss-Bonnet-Maxwell black hole, we calculate the black hole thermodynamic properties using the Hamilton-Jacobi equation. In the normal phase space, the cosmological constant and Gauss-Bonnet parameter are fixed, the black hole satisfies the first and second laws of thermodynamics, and the weak cosmic censorship conjecture (WCCC) is valid. On the other hand, in the case of extended phase space, the cosmological constant and Gauss-Bonnet parameter are treated as thermodynamic variables. The black hole also satisfies the first law of thermodynamics. However, the increase or decrease in the black hole's entropy depends on some specific conditions. Finally, we observe that the WCCC is violated for the near-extremal black holes in the extended phase space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.