Abstract

Atlantic salmon goose-type lysozyme (SalG) was previously shown to display features of cold-adaptation as well as renaturation following heat treatment. In this study differential scanning calorimetry (DSC) was carried out to investigate unfolding and potential refolding, while X-ray crystallography was used to study structural factors contributing to the temperature-related characteristics. The recombinant SalG has a melting temperature (T(m)) of 36.8 degrees C under thermal denaturation conditions and regains activity after returning to permissive (low) temperature. Furthermore, refolding is dramatically reduced in solutions with high SalG concentrations, coupled with significant protein precipitation. The structural features of SalG closely resemble those of other g-type lysozymes. However, the N-terminal region of SalG is less anchored to the rest of the molecule due to the absence of disulphide bonds, thus, contributing significantly to the low T(m) of SalG. The absence of disulphide bonds and the distribution of salt bridges may at the same time ease refolding leading to renaturation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.